

Jade’s	Guide	to	Object	Oriented	Programming	
Jade	Singh,	CS	61A	Spring	2020	

What	is	the	point	of	OOP?	

Sometimes,	when	coding,	we	want	to	create	objects	that	are	more	complicated	than	our	
basic	types	(integers,	strings,	booleans,	etc.).		We	saw	that	with	abstract	data	types	(ADTs),	
which	had	constructors	that	we	used	to	create	more	complex	data	types.		However,	there	
was	an	issue	with	ADTs:	some	ADTs	(like	our	tree	ADT)	didn’t	have	selectors	that	allowed	
us	to	mutate	our	ADT.		We	were	kind	of	stuck	with	whatever	we	got.	

Our	solution	to	this	problem	is	object	oriented	programming	(abbreviated	as	OOP).		
Rather	than	using	ADTs	or	defining	a	bunch	of	complex	objects	from	scratch,	we	can	create	
what	is	called	a	class,	which	is	sort	of	like	a	template	for	a	particular	object.		Every	time	we	
want	to	create	one	of	these	objects,	we	can	create	what	is	called	an	instance	of	the	class.		
This	prevents	us	from	having	to	write	a	lot	of	redundant	code.	Every	class	contains	an	
__init__	method	(see	more	about	the	__init__	method	below),	which	is	what	is	called	
whenever	we	create	a	new	instance	of	a	particular	class,	which	we	can	do	by	writing	the	
class	name	followed	by	parentheses.	
	

	
	
class Car:
 num_wheels = 4
 def __init__(self, color, make):
 self.color = color
 self.make = make
 def drive(self):
 return 'vroom vroom'
 def park(self):
 if self.num_wheels == 4:
 return 'In between the white lines!'
 else:
 return 'Oof, you better find a new spot :('
 def paint(self):
 return 'Added new ' + self.color + ' paint'
 def refill_gas_tank(self):
 self.gas = 10

jeep = Car('black', 'jeep')

Important	Definitions	

Instance	attribute	=	A	variable	that	is	specific	to	a	particular	instance	of	a	class	

• In	the	car	class,	color	and	make	are	examples	of	instance	attributes	because	they	are	
set	using	self	(self.color, self.make),	so	they	are	not	the	same	for	all	cars	

Class	attribute	=	A	variable	that	is	shared	across	all	instances	of	a	class	

• num_wheels	is	a	class	attribute	because	it	is	defined	outside	of	the	__init__	
method,	and	thus	shared	across	all	instances	

Whenever	we	try	to	find	the	value	of	a	particular	attribute	(such	as	jeep.color),	we	
always	check	first	in	the	instance	attributes,	then	in	the	class	attributes/methods,	then	in	
any	parent	class’s	class	attributes/methods	(see	the	inheritance	section	below).	

Methods	=	Functions	within	a	class	

• init,	drive,	park,	and	paint	are	methods	of	the	Car	class	

Dot	Notation	

When	we	access	methods	and	variables	in	object	oriented	programming,	we	use	what’s	
called	dot	notation.	Since	we	are	now	working	with	methods,	not	regular	functions,	we	can	
no	longer	just	say	things	like	drive()	and	park()	because	we	may	be	working	with	multiple	
classes	that	have	a	drive	or	a	park	method	(and	then	which	one	would	we	choose???	who	
knows???).	To	access	any	method	inside	of	a	class,	you	can	always	do	the	following:	

class_name.method(parameters)

For	example,	we	can	do	Car.drive(jeep),	which	will	call	Car’s	drive	method	with	
jeep	passed	in	as	self.		We	can	also	access	class	attributes	using	similar	notation:	

class_name.class_attribute

An	example	of	this	would	be	Car.num_wheels,	which	would	get	the	value	of	the	
num_wheels	attribute	of	the	Car	class.	

Now	you	may	be	wondering,	what	is	self?	Well,	as	a	python	convention,	we	generally	use	
self	within	the	methods	of	a	class	to	refer	to	an	instance	of	that	particular	class.	That	way,	
self.some_attribute	signifies	that	we	want	the	instance/class	attribute	(if	there’s	no	
instance	attribute)	some_attribute	associated	with	whatever	we’ve	passed	in	as	self.		

However,	self	is	not	a	special	keyword	in	python,	so	you	could	actually	set	the	name	of	the	
first	parameter	of	a	method	to	be	something	that’s	not	self	(like	foo,	for	example)	and	as	
long	as	you	used	foo.some_attribute	instead	of	self.some_attribute	
throughout	the	method,	your	code	would	still	work.	

Technically,	it	is	also	possible	to	pass	something	that	is	not	an	instance	of	the	current	class	
in	as	self	(such	as	the	number	1),	but	depending	on	the	body	of	the	method,	you	may	run	
into	some	errors	if	what	you’ve	passed	in	for	self	doesn’t	have	all	of	the	attributes	that	are	
requested	in	the	method.		For	example,	what	if	we	tried	to	get	self.color	and	we	had	
passed	in	1	for	self?	We	would	get	an	error.	

Since	self	is	the	variable	we	use	to	represent	an	instance	of	the	class,	instead	of	doing	
class_name.method(parameters),	we	can	also	call	a	method	with	
instance_name.method(any params other than self),	which	will	first	check	
the	instance	for	any	attributes	called	“method,”	then	if	it	doesn’t	find	anything,	it	will	check	
the	class	that	the	instance	is	a	part	of	to	see	if	there	are	any	methods	called	“method.”		We	
can	do	this	because	an	instance	of	a	class	has	access	to	all	of	the	methods	of	its	class.	

For	example,	if	we	wanted	to	access	jeep’s	color	attribute,	we	would	say:	

jeep.color

And	if	we	wanted	to	call	the	drive	method	of	Car	with	jeep	as	self,	we	could	say:	

jeep.drive()

Notice	that	the	parentheses	after	drive	are	empty	because	the	drive	method	has	no	other	
parameters	other	than	self.	Also,	note	that	if	jeep	was	not	an	instance	of	Car,	and	was	
instead	an	instance	of	another	class	that	had	its	own	drive	method,	or	if	jeep	had	an	
instance	attribute	that	was	a	function	called	drive,	Car.drive(jeep)would	not	be	the	
same	as	jeep.drive()	because	jeep’s	drive	would	not	be	Car’s	drive	method.	

	
Python’s	Magic	Methods	

It	seems	weird	that	every	time	we	create	an	instance	of	a	class,	like	when	we	defined	jeep	
above,	we	just	“called”	the	Car	class,	and	it	just	knew	to	call	the	__init__	method.	Also,	
what’s	up	with	the	double	underscores?	

Turns	out	that	python	has	a	bunch	of	“magic	methods”,	written	as	__method_name__,	that	
we’ve	actually	been	working	with	since	the	very	beginning	of	61A.	For	each	of	these	magic	
methods,	there	are	shortcut	ways	to	implicitly	call	them	without	writing	out	the	full	name	
with	double	underscores	and	everything.	One	example	that	we’ve	used	as	a	lot	is	__eq__,	
which	is	implicitly	called	every	time	we	use	the	==	operator.	

In	the	case	of	__init__,	we	can	implicitly	call	it	by	following	a	class	name	with	
parentheses	(and	passing	in	any	non-self	parameters	as	needed).	

A	special	note	about	__init__	is	that	you	never	explicitly	pass	in	anything	for	self.		Self	in	the	
__init__	method	always	refers	to	the	new	instance	that’s	being	created,	so	you	should	pass	in	
values	for	all	parameters	in	__init__	except	for	self.	

There	are	two	other	magic	methods	that	are	important	for	61A:	__repr__	and	__str__.	
The	__repr__	method	of	a	class	is	implicitly	called	whenever	we	request	an	instance	of	
that	class.	The	__str__		method	of	a	class	is	implicitly	called	when	we	print	an	instance	of	
that	class.	As	with	any	of	these	methods,	we	can	call	them	implicitly	or	explicitly,	but	
__repr__		and	__str__		perform	slightly	differently	depending	on	whether	the	call	is	
implicit	or	explicit.	Let’s	look	at	an	example	to	see	what	I	mean:	

class Car:
 num_wheels = 4
 def __init__(self, color):
 self.color = color
 def __str__(self):
 return “Love that “ + self.color + “ car!”
 def __repr__(self):
 return “Car has “ + self.num_wheels + “ wheels”
jeep = Car(“powder blue”)

>>> jeep
Car	has	4	wheels	
>>> jeep.__repr__()	
“Car	has	4	wheels”	
>>> print(jeep)	
Love	that	powder	blue	car!	
>>> jeep.__str__()	
“Love	that	powder	blue	car!”	
	
Since	jeep	is	an	instance	of	car,	requesting	the	variable	jeep	will	implicitly	call	the	
__repr__			method	of	the	car	class.		Note	that	when	we	explicitly	call	__repr__		,	there	
are	quotes,	but	when	we	implicitly	call	it	there	are	no	quotes.	This	is	because	when	we	
implicitly	call	__repr__,	we	are	actually	printing	the	result	of	calling	__repr__		,	and	
printing	a	string	gets	rid	of	the	quotes.		When	we	directly	call	it,	there	is	no	printing	
involved,	so	the	quotes	are	still	there.	

Similarly,	printing	the	variable	jeep	will	implicitly	call	the	__str__			method	of	the	Car	
class.		When	we	explicitly	call	__str__		,	there	are	quotes,	but	when	we	implicitly	call	it	
there	are	no	quotes.		This	is	because	when	we	call	__str__			implicitly,	just	as	with	
__repr__		,	we	are	actually	printing	the	result	of	calling	__str__	.		When	we	directly	call	
it,	there	is	no	printing	involved,	so	the	quotes	are	still	there.	

	
Inheritance	

Sometimes,	we	want	to	create	an	object	that	shares	some	attributes/methods	with	another	
existing	object.	Rather	than	creating	a	whole	new	object	and	copying	a	lot	of	code	from	our	
existing	object,	we	can	make	our	new	object	inherit	from	our	existing	object.	This	is	very	
similar	to	how	we	worked	with	higher	order/parent	functions	earlier	in	the	class,	because	
a	child	class	basically	has	access	to	all	of	the	attributes	and	methods	of	its	parent	class.		To	

declare	a	child	class,	all	you	have	to	do	is	put	the	parent	class	name	in	parentheses	after	the	
child	class	name	in	the	class	definition.	

For	example,	if	we	wanted	to	make	the	Motorcycle	class	inherit	from	the	Car	class:	

class Motorcycle(Car):
 …

Now,	any	instance	of	the	Motorcycle	class	has	access	to	all	of	the	attributes	and	methods	
of	the	Car	class,	so	if	we	create	an	instance	of	the	Motorcycle	class	called	yamaha,	we	
can	do	things	like	yamaha.drive().	We	can	also	choose	to	override	some	of	the	
attributes	and	methods	from	the	Car	class	by	redefining	them	in	the	Motorcycle	class.	If	
we	decide	that	we	want	Motorcycles	to	only	have	two	wheels	instead	of	four,	we	can	define	
a	num_wheels	attribute	in	the	Motorcycle	class	and	set	it	equal	to	2.	If	we	do	that	
yamaha.num_wheels	will	return	2,	but	jeep.num_wheels	will	still	return	4.	
	

	

OOP	Example	Walkthrough	

Because	OOP	can	get	a	little	complicated,	I	recommend	creating	a	diagram	to	keep	track	of	
everything.		I’ve	made	a	walkthrough	of	how	to	best	diagram	and	work	through	an	OOP	
WWPD	(which	often	shows	up	on	midterm	2).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

class Car:
 num_wheels = 4
 def __init__(self, color, make):
 self.color = color
 self.make = make
 self.gas = 10
 print(“New car on the road!”)
 def drive(self):
 if self.gas == 0:
 return “Can't drive on an empty tank!”
 self.gas -= 5
 return 'vroom vroom'
 def park(self):
 if num_wheels >= 4:
 return “In between the white lines!”
 else:
 return “Oof, you better find a new spot!”
 def paint(self):
 return “Added new “ + self.color + “ paint

to the “ + make + “!”
 def refill_gas_tank(self):
 self.gas = 10
class Motorcycle(Car):
 num_wheels = 2

>>> wrangler = Car('black', 'jeep')

>>> wrangler.num_wheels

>>> wrangler.drive(wrangler)

>>> Car.drive(wrangler)

>>> wrangler.num_wheels = 3
>>> acura = Car('silver', 'acura')

>>> lexus = Car('white', 'lexus')

>>> lexus.num_wheels

>>> Car.num_wheels = 5
>>> wrangler.num_wheels

>>> lexus.num_wheels

>>> acura.drive = lambda: 'Needs more gas!'
>>> acura.drive()

>>> Car.drive(acura)

>>> Car('neon green', 'toy').paint()	
	
>>> harley = Motorcycle(‘orange’, ‘harley’)

>>> harley.park()	

	
The	first	step	of	any	OOP	WWPD	is	to	diagram	any	classes	that	you	need	to	use.		I	like	to	
diagram	classes	by	creating	a	box	for	the	class,	then	writing	any	class	attributes/methods	
in	the	box.		That	way,	you	know	all	of	the	information	that	the	class	contains.		For	the	above	
example,	I	wrote	out	a	box	representing	the	Car	class,	which	contains	its	num_wheels	
attribute,	as	well	at	the	__init__,	drive,	park,	paint,	and	refill_gas_tank	methods.	
	
Now,	looking	at	the	WWPD	code,	we	are	setting	wrangler	equal	to	a	new	instance	of	the	Car	
class,	which	we	know	is	going	to	call	the	__init__	method	of	the	car	class.		Car’s	__init__	takes	
in	self	(remember	that	we	never	explicitly	pass	in	anything	to	__init__’s	self	parameter),	
color,	which	we’ve	passed	in	“black”	for,	and	make,	which	we’ve	passed	in	“jeep”	for.		The	
__init__	method	sets	the	color,	make,	and	gas	attributes,	so	I’ve	created	a	new	box	
representing	wrangler,	with	all	of	those	instance	attribute	values	inside	of	it.		We	then	print	
out	“New	car	on	the	road!”	

	
We	will	now	start	to	see	the	value	of	diagramming:	when	we	look	for	the	value	of	
wrangler.num_wheels,	we	can	look	in	wrangler’s	box	for	a	num_wheels.		We	don’t	see	one,	
so	we	know	it’s	not	an	instance	attribute.		We	can	then	check	Car’s	box,	since	wrangler	is	an	
instance	of	Car,	and	see	that	there	is	a	num_wheels.		We	will	return	its	value	of	4.	
	

	
Now	let’s	call	some	methods.		Remember	that	wrangler.drive()	means	that	we’re	calling	the	
drive	method	of	wrangler’s	class	(which	in	this	case	means	Car’s	drive	method)	with	
wrangler	as	self.		But	hang	on,	we’ve	also	passed	in	something	in	the	parentheses	as	well.		
This	will	produce	an	error	because	we’re	trying	to	pass	in	two	arguments	(wrangler	and	
wrangler),	when	there	is	only	one	parameter.	
	
Car.drive(wrangler)	does	work,	however,	because	we’re	calling	Car.drive	with	wrangler	
passed	in	as	self.		That	will	first	check	if	wrangler’s	gas	=	0	(which	it’s	not),	then	subtract	5	
from	wrangler’s	gas	and	return	“vroom	vroom.”		Note	that	we	keep	the	quotes	on	“vroom	
vroom”	because	returning	a	string	keeps	the	quotes	on	it.	
	

	
Now	we	need	to	set	a	num_wheels	attribute	in	wrangler.		Note	that	we	are	not	changing	the	
value	of	Car.num_wheels!		We	explicitly	state	that	we	want	to	set	wrangler.num_wheels,	so	
we	will	create	a	new	instance	attribute	in	wrangler	called	num_wheels	and	set	it	equal	to	3.	

	
We	are	now	creating	a	new	instance	of	the	Car	class,	which	means	that	we	call	Car’s	__init__	
method.		Car’s	__init__	takes	in	self	(remember	that	we	never	explicitly	pass	in	anything	to	
__init__’s	self	parameter),	color,	which	we’ve	passed	in	“silver”	for,	and	make,	which	we’ve	
passed	in	“acura”	for.		The	__init__	method	sets	the	color,	make,	and	gas	attributes,	so	I’ve	
created	a	new	box	representing	acura,	with	all	of	those	instance	attribute	values	inside	of	it.		
We	then	print	out	“New	car	on	the	road!”	

	
We	are	now	creating	another	new	instance	of	the	Car	class,	which	means	that	we	call	Car’s	
__init__	method.		Car’s	__init__	takes	in	self	(remember	that	we	never	explicitly	pass	in	
anything	to	__init__’s	self	parameter),	color,	which	we’ve	passed	in	“white”	for,	and	make,	
which	we’ve	passed	in	“lexus”	for.		The	__init__	method	sets	the	color,	make,	and	gas	
attributes,	so	I’ve	created	a	new	box	representing	lexus,	with	all	of	those	instance	attribute	
values	inside	of	it.		We	then	print	out	“New	car	on	the	road!”	
	

	
When	we	look	for	the	value	of	lexus.num_wheels,	we	can	look	in	lexus’s	box	for	a	
num_wheels.		We	don’t	see	one,	so	we	know	it’s	not	an	instance	attribute.		We	can	then	
check	Car’s	box,	since	lexus	is	an	instance	of	Car,	and	see	that	there	is	a	num_wheels.		We	
will	return	its	value	of	4.	
	
Next,	we	update	Car’s	num_wheels	attribute	to	5.		Note	that	when	we	call	
wrangler.num_wheels,	we	still	get	3,	because	we	check	instance	attributes	before	class	
attributes,	and	wrangler	has	an	instance	attribute	num_wheels	with	a	value	of	3.		However,	
when	we	call	lexus.num_wheels,	we	can	see	that	it	has	changed	to	5,	because	we’re	pulling	
its	value	from	Car.num_wheels,	which	is	now	5.	

	
Just	as	when	we	set	wrangler.num_wheels,	we	will	also	create	a	new	instance	attribute	for	
acura	called	drive,	set	that	equal	to	the	given	lambda	function,	and	add	it	to	acura’s	box.	
	
Note:	I	actually	made	a	typo	when	writing	out	the	code	for	this,	look	at	the	above	code	to	
see	the	correct	line	of	code.		It	should	be	acura.drive = lambda: “Needs more
gas!”	Ignore	the	lambda	parameter.	

	
Now	is	where	we	really	see	the	subtle	difference	between	acura.drive()	and	
Car.drive(acura):	when	we	search	for	acura’s	drive,	we	will	first	look	inside	the	instance,	
and	find	the	lambda	function.		We	will	then	run	that	as	drive,	returning	“Needs	more	gas!”	
When	we	call	Car.drive(acura),	we	will	actually	run	the	body	of	Car.drive,	which	will	
subtract	5	from	acura’s	gas	and	return	“vroom	vroom.”	

	
We	are	now	creating	another	new	instance	of	the	Car	class,	which	means	that	we	call	Car’s	
__init__	method.		Note,	however,	that	we	didn’t	assign	this	instance	to	any	variable	name,	so	
once	we	create	the	instance	and	run	the	paint	method,	the	instance	will	go	away	because	
it’s	not	bound	to	any	variable	name.		Car’s	__init__	takes	in	self	(remember	that	we	never	
explicitly	pass	in	anything	to	__init__’s	self	parameter),	color,	which	we’ve	passed	in	“neon	
green”	for,	and	make,	which	we’ve	passed	in	“toy”	for.		The	__init__	method	sets	the	color,	
make,	and	gas	attributes,	so	I’ve	created	a	new	box		representing	this	unnamed	instance,	
with	all	of	those	instance	attribute	values	inside	of	it.		We	then	print	out	“New	car	on	the	
road!”	
	
Now,	to	run	the	paint	method,	we	first	check	the	instance,	find	no	paint	attribute,	then	
check	the	Car	class	and	find	the	paint	method.		It	returns	the	string	“Added	new	neon	green	
paint	to	the	toy!”	

	

	
Since	we’re	creating	our	first	instance	of	the	Motorcycle	class,	I	also	wrote	out	a	box	
representing	the	Motorcycle	class.		The	only	thing	it	has	inside	of	it	is	the	num_wheels	
attribute,	which	is	equal	to	2.		Note	also	that	the	Motorcycle	class	inherits	from	the	Car	
class,	so	when	we	create	harley,	we	will	check	the	Motorcycle	class	for	an	__init__,	and	since	
it	doesn’t	have	one,	we	will	check	the	Car	class,	which	does	have	one.		We	will	set	the	
instance	attributes	color,	make,	and	gas	for	Harley	(which	I’ve	added	to	a	new	box),	and	
print	“New	car	on	the	road!”	

	
When	we	call	harley.park(),	we	will	first	check	harley	for	any	instance	attributes	called	
park,	then	check	the	Motorcycle	class	for	a	park,	then	check	the	Car	class,	which	does	have	
one.		Self	will	be	harley,	so	when	we	look	for	the	value	of	harley.num_wheels,	we	will	first	
check	the	instance	(which	doesn’t	have	a	num_wheels),	then	check	the	Motorcycle	class,	
which	does	have	one.		Since	Motorcycle.num_wheels	=	2,	we	will	return	“Oof	you	better	find	
a	new	spot!”	

